Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

9701/35
Paper 3 Advanced Practical Skills 1
May/June 2019
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 The reaction between acids and alkalis is exothermic. You will find the concentration of a monoprotic acid, HZ, by a thermometric method using a solution of sodium hydroxide of known concentration.

$$
\mathrm{HZ}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaZ}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FA 1 is a solution of acid HZ .
FA 2 is $2.00 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .

(a) Method

- Place the thermometer into FA 1. Record the temperature of FA 1 in the table. This is the temperature when the volume of FA 2 is 0.0 .
- Rinse and dry the thermometer.
- Place the thermometer into FA 2. Record the temperature of FA 2 in the table. This is the temperature when the volume of FA 1 is 0.0 .
- Fill a burette with FA 1.
- Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- From the burette transfer $35.0 \mathrm{~cm}^{3}$ of FA 1 into the plastic cup.
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to measure $5.0 \mathrm{~cm}^{3}$ of FA 2.
- Transfer the $5.0 \mathrm{~cm}^{3}$ of FA 2 into the plastic cup. Stir the mixture and record the highest temperature.
- Tip out the solution, rinse the plastic cup with water, shake it to remove excess water and replace the cup in the beaker.
- Rinse and dry the thermometer.
- Use the burette to transfer $30.0 \mathrm{~cm}^{3}$ of FA 1 into the plastic cup.
- Use the measuring cylinder to transfer $10.0 \mathrm{~cm}^{3}$ of FA 2 into the plastic cup.
- Stir the mixture and record the highest temperature.
- Tip out the solution, rinse the plastic cup with water, shake it to remove excess water and replace the cup in the beaker.
- Rinse and dry the thermometer.
- Continue the experiment using the volumes of FA 1 and FA 2 given in the table and record the maximum temperature of each mixture.

volume FA 1/ cm^{3}	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	0.0
volume FA 2/cm ${ }^{3}$	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
temperature $/{ }^{\circ} \mathrm{C}$									

Keep FA 1 for use in Question 2.

(b) (i) Plot a graph of temperature of solution (y-axis) against volume of FA 2 added (x-axis) on the grid. Select a scale on the y-axis to include a temperature of $2^{\circ} \mathrm{C}$ above your maximum thermometer reading. Label any points you consider anomalous.

Draw two lines of best fit through the points on your graph, the first for the increase in temperature and the second for the decrease in temperature of the mixtures. Extrapolate the two lines so they intersect.

(ii) The intersection on your graph occurs at the volume of FA 2 that reacted to form a neutral solution.

Determine the volumes of FA 1 and FA 2 required to form a neutral solution.
cm^{3} of FA 1 neutralises
cm^{3} of FA 2.
(c) (i) Calculate the number of moles of sodium hydroxide, FA 2, required to obtain a neutral solution in this experiment.

$$
\text { moles of } \mathrm{NaOH}=
$$

\qquad mol [1]
(ii) Hence calculate the concentration of HZ in FA 1.
concentration of $\mathrm{HZ}=$ \qquad moldm^{-3}
(d) Explain how you would use the data obtained to calculate the enthalpy change of neutralisation of HZ . You do not need to carry out the calculation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Total: 12]

2 You will now determine the concentration of HZ in FA 1 by titration using aqueous sodium carbonate of known concentration.

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

FA 3 is 0.0353 mol dm ${ }^{-3}$ aqueous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. methyl orange indicator

(a) Dilution of FA 1

- Use the $10.0 \mathrm{~cm}^{3}$ pipette to transfer $10.0 \mathrm{~cm}^{3}$ of FA 1 into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Add distilled water to the mark.
- \quad Shake the flask to mix the solution thoroughly and label it FA 4.

Titration

- Fill the second burette with FA 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add approximately 10 drops of methyl orange.
- Perform a rough titration and record your burette readings in the space below.
\qquad cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain that any recorded results show the precision of your practical work.
- Record all of your burette readings and the volume of FA 4 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 4 to be used in your calculations. Show clearly how you obtained this value.
(c) (i) Give your answers to (ii), (iii) and (iv) to an appropriate number of significant figures. [1]
(ii) Calculate the number of moles of sodium carbonate in the FA 3 pipetted into the conical flask.
moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ \qquad mol [1]
(iii) Deduce the number of moles of HZ present in the volume of FA 4 recorded in (b).

$$
\text { moles of } \mathrm{HZ}=
$$

(iv) Calculate the concentration of HZ present in FA 1.

$$
\text { concentration of HZ in FA } 1=
$$

\qquad moldm ${ }^{-3}$
(d) In Question 1 you determined the concentration of HZ in FA 1 by a thermometric method. In Question 2 you determined the concentration of HZ in FA 1 by titration.
Tick which one of the following statements you believe to be true.

The method in Question $\mathbf{1}$ is more accurate than the method in Question 2.	
The method in Question $\mathbf{2}$ is more accurate than the method in Question 1.	
The two methods are of equal accuracy.	

Explain your answer.
\qquad
\qquad
\qquad
(e) A teacher informed a class that 112.3 g of pure HZ had been dissolved in distilled water to make $1 \mathrm{dm}^{3}$ of FA 1. A student in the class suggested that HZ could be ethanoic acid.

Using your answer to (c)(iv) show, by calculation, whether the student was correct. (If you were unable to complete the calculation in (c)(iv) you may assume the concentration was $2.08 \mathrm{moldm}^{-3}$. This is not the correct value.)

The student was correct/incorrect because \qquad
\qquad

Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FA 5, FA 6 and FA 7 are solutions each containing one cation and one anion. One of the cations and all of the anions are listed in the Qualitative Analysis Notes. You will carry out a series of tests on FA 5, FA 6 and FA 7 and draw conclusions from your observations.
Use a separate 1 cm depth of each solution in a test-tube for the following tests.

test	observations		
	FA 5	FA 6	FA 7
Add a 1 cm depth of aqueous sodium carbonate.			
Add a 1 cm length of magnesium ribbon.			
Add 2 or 3 drops of aqueous silver nitrate, then			
add aqueous ammonia.			
Add a 1 cm depth of aqueous barium nitrate, then			
add a 1 cm depth of dilute hydrochloric acid.			

test	observations		
	FA 5	FA 6	FA 7
Add aqueous sodium hydroxide.			
Add a 1 cm depth of FA 7.			

(b) Use your observations from (a) to identify as many ions as possible. Give the formula of each ion present. Write 'unknown' if you were unable to make a positive identification of an ion.

	FA 5	FA 6	FA 7
cation			
anion			

(c) Give the ionic equation for any precipitation reaction involving FA 5 that you observed in (a). Include state symbols.
\qquad

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO_{3}^{2-}	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{A} l$ foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-(\mathrm{aq})}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	毋 ¢ ¢
๕吅	
	® 을
	\＆¢ 镸
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

